

Year 11 Science

Helping students succeed

Triple Science

- 3 GCSEs being studied—Biology, Chemistry & Physics
- Exams All examined in the summer and are each 1hr 45mins
- Revision needs to be thorough and completed regularly

Double Science— Combined Science: Trilogy

- These are 2 separate qualifications, with exams at the end of this year
- Each exam in 1hr 15mins long
- It is combined Science, so all the marks count towards a double grade in Science
- Students need to do well in Biology, Chemistry and Physics

Revision Sources

Use specifications and specimen papers -

- http://www.aqa.org.uk/subjects/ science/gcse
- Textbooks—
- www.kerboodle.com
- Explanation—
- **Revision guides**

Exam Success

Make sure students revise.

AQA revision guides.

Complete practice questions

<u>Exams</u>

- All exams are taken at the end of year 11, so thorough revision is vital
- Equations must be learnt
- More mathematical content—30% in Physics, 20% in Chemistry and 10% in Biology
- Practical skills theory is assessed in these

Exam	Date	Time
Biology 1	15/05/2018	pm
Biology 2	11/06/2018	am
Chemistry 1	17/05/2018	am
Chemistry 2	13/06/2018	am
Physics 1	23/05/2018	pm
Physics 2	15/06/2018	am

ANY QUESTIONS?

Please e-mail us at: mi.harris@tavistockcollege.org

- EQUIPMENT
- Black pen Pencil Pencil Sharpener Ruler Rubber Scientific Calculator Protractor

Equations to learn

Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1	weight = mass × gravitational field strength (g)	W = m g
2	work done = force × distance (along the line of action of the force)	W = F s
3	force applied to a spring = spring constant × extension	F = k e
4	moment of a force = force × distance (normal to direction of force)	M = F d
5	pressure = $\frac{\text{force normal to a surface}}{\text{area of that surface}}$	$p = \frac{F}{A}$
6	distance travelled = speed × time	s = v t
7	acceleration = change in velocity time taken	$a = \frac{\Delta v}{t}$
8	resultant force = mass × acceleration	F = m a
9 HT	momentum = mass × velocity	p = m v
10	kinetic energy = $0.5 \times mass \times (speed)^2$	$E_k = \frac{1}{2}m v^2$
11	gravitational potential energy = mass × gravitational field strength (g) × height	$E_p = m g h$
12	power = $\frac{\text{energy transferred}}{\text{time}}$	$P = \frac{E}{t}$
13	power = work done time	$P = \frac{W}{t}$
14	efficiency = useful output energy transfer total input energy transfer	
15	efficiency = useful power output total power input	
16	wave speed = frequency × wavelength	$v = f \lambda$
17	charge flow = current × time	Q = I t
18	potential difference = current × resistance	V = I R
19	power = potential difference × current	P = V I
20	power = $(current)^2 \times resistance$	$P = I^2 R$
21	energy transferred = power × time	E = P t
22	energy transferred = charge flow × potential difference	E = Q V
23	density = mass volume	$\rho = \frac{m}{V}$

Note:

Equations 4 and 5 are for Triple students only