

Year 11 Science

Helping students succeed

Triple Science

- 3 GCSEs being studied—Biology, Chemistry & Physics
- Exams All examined in the summer and are each 1hr 45mins
- Revision needs to be thorough and completed regularly

Double Science— Combined Science: Trilogy

- These are 2 separate qualifications, with exams at the end of this year
- Each exam in 1hr 15mins long
- It is combined Science, so all the marks count towards a double grade in Science
- Students need to do well in Biology, Chemistry and Physics

Revision Sources

Use specifications and specimen papers -

http://www.aqa.org.uk/subjects/science/gcse

Online revision—

GCSEPod

Explanation—

Revision guides

Exam Success

Make sure students revise.

AQA revision guides.

Complete practice questions

Exams

- All exams are taken at the end of year 11, so thorough revision is vital
- Equations must be learnt
- More mathematical content—

30% in Physics, 20% in Chemistry and 10% in Biology

Practical skills theory is assessed in these

EQUIPMENT

Black pen

Pencil

Pencil Sharpener

Ruler

Rubber

Scientific Calculator

Protractor

Exam	Date	Time
Biology 1	14/5/19	pm
Biology 2	7/6/19	pm
Chemistry 1	16/5/19	am
Chemistry 2	12/6/19	am
Physics 1	22/5/19	pm
Physics 2	14/6/19	am

ANY QUESTIONS?

Please e-mail us at: mi.harris@tavistockcollege.org

Equations to learn

Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1	weight = mass × gravitational field strength (g)	W = m g
2	work done = force × distance (along the line of action of the force)	W = F s
3	force applied to a spring = spring constant × extension	F = k e
4	moment of a force = force × distance (normal to direction of force)	M = F d
5	pressure = force normal to a surface area of that surface	$p = \frac{F}{A}$
6	distance travelled = speed × time	s = v t
7	acceleration = change in velocity time taken	$a = \frac{\Delta v}{t}$
8	resultant force = mass × acceleration	F = m a
9 HT	momentum = mass × velocity	p = m v
10	kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$	$E_k = \frac{1}{2}m v^2$
11	gravitational potential energy = mass × gravitational field strength (g) × height	$E_p = m g h$
12	power = energy transferred time	$P = \frac{E}{t}$
13	power = work done time	$P = \frac{W}{t}$
14	efficiency = useful output energy transfer total input energy transfer	
15	efficiency = useful power output total power input	
16	wave speed = frequency × wavelength	$v = f \lambda$
17	charge flow = current × time	Q = I t
18	potential difference = current × resistance	V = I R
19	power = potential difference × current	P = V I
20	power = (current) ² × resistance	$P = I^2 R$
21	energy transferred = power × time	E = P t
22	energy transferred = charge flow × potential difference	E = Q V
23	density = mass volume	$ \rho = \frac{m}{V} $

Note:

Equations 4 and 5 are for Triple students only